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ABSTRACT
Interconnect networks are an essential component of high-performance
computing (HPC) systems. To study large-scale networking systems,
parallel discrete event simulation (PDES) has been widely used to
simulate real-world HPC behaviors. However, PDES simulation
requirements and computational complexity are increasing rapidly,
making it challenging to achieve accurate results. Therefore, re-
searchers have been exploring a surrogate-ready PDES framework
that utilizes machine learning-based surrogate models to accelerate
PDES. In this paper, we present our vision and initial step to leverage
machine learning models to utilize spatial-temporal information
to forecast interconnect network traffic. The preliminary results
show that it is promising to explore machine learning models for
interconnect network traffic forecasting.
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1 INTRODUCTION
Efficient and scalable interconnect networks are critical for high-
performance computing (HPC) systems to support unprecedented
system sizes at a reasonable cost. The Dragonfly network is an
example of a hierarchical, high-radix and low-diameter topology
that offers high-bandwidth and low-latency service while reducing
network costs [4, 5]. The network topology is as shown in Figure 1.
This unique network topology has been widely adopted by various
HPC facilities, including the National Energy Research Scientific
Computing Center and the Argonne Leadership Computing Facility.

Parallel discrete event simulation (PDES) has been successfully
applied to model network data flows and hierarchical storage sys-
tems in various applications, including science enterprise design
and provisioning, transportation and mobility, internet and cyber-
security simulations, materials science, and hardware co-design [9].
While PDESmodeling frameworks such as ROSS [1] and CODES [8]
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Overview of Dragonfly Topology 
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Figure 1: The illustration of the 1D Dragonfly network.

can simulate Dragonfly networks, their high computational com-
plexity limits practical deployment. For example, simulating the
4,096-node MILC for 122 milliseconds using PDES takes up to four
hours [11].

In order to tackle this issue, there is a high demand for high-
fidelity surrogate models that have the potential to replace billions
or even trillions of PDES events. However, developing effective
surrogate models poses several challenges. Firstly, when simulating
multiple HPC applications on a large-scale interconnect network,
the fierce contention among the applications for shared resources
may have a negative impact on the forecasting accuracy of surrogate
models [6, 12]. Secondly, interconnect networks, e.g., dragonfly
network, exhibit a unique network topology, making it daunting
to capture the correlation between different ports in the unique
topology to improve the forecasting performance. Thirdly, PDES
events are generated at a fast pace, and surrogate models need to
ensure prediction efficiency while maintaining effectiveness.

2 PRELIMINARY RESULTS
To capture the complex network traffic, we investigate a deep
learning-based model, LSTM (Long Short-Term Memory), due its
wide adoption in a variety of traffic prediction scenarios such as
road traffic forecasting [2, 7, 13]. LSTM is developed based on the
LSTM [3] framework. LSTM is shown to be effective in addressing
the gradient vanishing problem and capable of capturing long-term
dependency [10]. The forecasting result of LSTM on a port of a
router is shown in Figure 2. The LSTM is trained on the training
data (the blue line) and tested on the test data (the orange line). We
can clearly observe that the forecast data (the green line) is close to
the test data (the orange line). It indicates the LSTM can accurately
forecast the network traffic.
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Figure 2: The forecasting result of the LSTM.

3 THE INTEGRATION OF SURROGATE MODEL
AND PDES

We envision a surrogate-ready PDES where the simulation alter-
nates between two phases: a detailed PDES phase where the appli-
cation workload is simulated fully and a surrogate phase where the
induced traffic is forecasted to fast-forward PDES through the time
period forecasted by the surrogate.

4 CONCLUSION AND FUTUREWORK
In this paper, we explore the possibility of spatial-temporal machine
learningmodels as surrogate models to leverage the PDESmodeling,
by forecasting the intricate traffic in the Dragonfly network. Our
preliminary analysis demonstrates the the potential of LSTM as
a surrogate model. However, our current version of LSTM does
not utilize the spatial information of the interconnect network and
further investigation is needed to determine the combination of
forecasted results from surrogate models and PDES.

For future work, we plan to incorporate more network features
(e.g., bandwidth consumed and busy time) and consider the spatial
information (e.g., correlation between different ports within the
same router, group or network) of the interconnect network for
machine learning models. Furthermore, exploring the potential of
the advanced machine learning models in interconnect network
traffic forecasting, e.g., transformers and graph neural networks
(GNNs), is also a promising research direction.
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