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ABSTRACT

Interconnect networks are the foundation for modern high perfor-
mance computing (HPC) systems. Parallel discrete event simulation
(PDES), serving as a cornerstone in the study of large-scale network-
ing systems by modeling and simulating the real-world behaviors
of HPC facilities, faces escalating computational complexities at
an unsustainable scale. The research community is interested in
building a surrogate-ready PDES framework where an accurate
surrogate model can be used to forecast HPC behaviors and re-
place computationally expensive PDES phases. In this paper, we
focus on forecasting application iteration times, the key indicator of
large-scale networking performance, with network features, such as
bandwidth-consumed and busy time on routers. We introduce five
representative methods, including LAST, Average, ARIMA, LSTM,
and the proposed framework LSTM-Feat, to forecast the iteration
times of an exemplar application MILC running on a dragonfly
system. By incorporating network features, LSTM-Feat can under-
stand dependencies between network features and iteration times,
thus facilitating forecasts. The experiments demonstrate the effec-
tiveness of incorporating network features into surrogate models
and the potential of surrogate models to accelerate PDES.
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1 INTRODUCTION

The computing power of High-performance computing (HPC) sys-
tems makes them critical for a variety of applications, such as cli-
mate modeling, molecular dynamics and drug discovery. The perfor-
mance of HPC systems depends on the effectiveness and scalability
of their interconnect networks. One noteworthy example is the drag-
onfly network topology, a hierarchical, high-radix, low-diameter
architecture which is able to incur reduced network cost while
achieving high-bandwidth and low-latency performance [15, 16].
This topology has gained widespread adoption across various HPC
facilities, e.g., the National Energy Research Scientific Computing
Center and the Argonne Leadership Computing Facility.

Parallel discrete event simulation (PDES) is a computational
technique used to simulate dynamic behaviors of complex systems,
including internet and cybersecurity simulations, transportation
and mobility applications, and hardware co-design simulations [24].
Despite the success of PDESmodeling frameworks such as ROSS [4]
and CODES [23], the simulation requirements and computational
complexity are growing at an intractable rate. For instance, PDES
requires four hours to simulate behaviors of a 4,096-node system
over a 12 millisecond period [26].

To address the computational issue, an active research topic is
to construct fast surrogate models to forecast specific activities and
accelerate PDES. However, there still remain several unsolved chal-
lenges. One such challenge is accurately and efficiently forecasting
workload-level activities, e.g., application iteration times, using
data available from fine-grain simulations. For applications that
work by iteratively looping over a set of recurring computing and
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communication tasks, such as the tasks required for daily weather
predictions, the time to complete each iteration can vary signifi-
cantly when network congestion delays communication operations.
Furthermore, network features such as router port bandwidth and
busy time can expose the state of the network congestion, but it is
not straightforward how such features can be leveraged to facilitate
iteration times forecasting.

To tackle the above challenges, we explore several representative
surrogate modeling approaches, including LAST, Average, ARIMA,
LSTM, and LSTM-Feat, for application iteration times forecasting.
By taking network features into account, the proposed LSTM-Feat
is able to leverage dependencies between network features and
iteration times. The experiments show that incorporating network
features into a surrogate model is beneficial to forecasts and promis-
ing surrogate modeling approaches to accelerate PDES.We envision
a surrogate-ready PDES that seamlessly shifts between a detailed
simulation of the application workload and a fast-forward surrogate
phase based on forecasts of surrogate models.

2 RELATEDWORK

2.1 ML for Time Series Forecasting

Machine learning (ML) for time-series forecasting has been studied
for a long time [9]. The task aims to forecast a period of future
data given a sequence of historical data and has a variety of ap-
plications, including transportation, finance and medicine. The
earlier researchers leverage the statistical methods, e.g., ARIMA
(AutoregRessive Integrated Moving Average) [3, 18], and tradi-
tional machine learning methods, such as SVM (Support Vector
Machine) [5, 14] to forecast time-series data. However, they may
not achieve desirable performance due to their linear assumptions.
Recently, time-series forecasting has made a significant progress
due to the emergence of the deep learning. Deep learning models
deliver expressive performance because they can capture complex
pattern in time-series data, like Convolutional Neural Network
(CNN) [29, 34, 36], Recurrent Neural Network (RNN) [7, 22, 29],
LSTM [1, 21, 34], Graph neural network (GNN) [6, 30, 37], Trans-
former [20, 25, 28] and State Space Models [2, 10, 32]. However,
none of the above work aim at forecasting application iteration
times in the HPC system. This paper is focused on forecasting
application iteration times in the dragonfly system.

2.2 Accelerate PDES with Surrogate Models

Various multi-resolution and hybrid PDES models [11, 12, 17, 19]
have been proposed to accelerate high-fidelity PDES simulations
and have shown promising results. With the emergence of machine
learning, the community is interested in designing [8, 31, 33] a
high-fidelity ML-based surrogate model to accelerate PDES by fore-
casting port-level network traffic in the dragonfly system. Different
from the existing work focusing on port-level network traffic fore-
casting, we forecast application iteration times, a workload-level
characteristics, and take network features into account to facilitate
forecasting accuracy with machine learning surrogate models.

3 METHODOLOGY

3.1 Background

We focus on the 1D dragonfly network as shown in Figure 1. The
dragonfly network [16] has a hierarchical architecture with three
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Figure 1: The illustration of the 1D Dragonfly network.

levels: router, group, and system. The system are divided into mul-
tiple groups, and a group has multiple routers. A router connects
to computer nodes (terminal) by terminal channel links, connects
to other routers within a group by local channel links and connects
to other routers outside the group by global channel links. The
connection points between routers and links are ports on routers.
When running on the dragonfly network, applications are divided
into multiple processes, which are then placed on the computer
nodes. Each process occupies a computer nodes and the processes
collaborate with each other on executing applications. The exe-
cution commonly consists of multiple steps, so each process has
multiple iterations to complete. Each process is assigned a unique
identifier known as a "rank"1. We aim to forecast application it-
eration times for each rank, which refers to the time it takes to
complete one iteration. Iteration denotes the repetitive execution
of a set of computational and communication tasks. The processes
communicate with each other by sending messages, and routers for-
ward the messages through the ports. During the communication,
the ports have key characteristics in the dragonfly network, e.g.,
bandwidth-consumed, busy time, etc. The system characteristics
reflect the status of the dragonfly network and can be potentially
used to improve the accuracy of forecasts.

3.2 Problem Definition

Let the dragonfly network have 𝑛𝑟 routers and 𝑛𝑐 computer nodes
and𝑛𝑝 processes placed on the computer nodes for execution. In the
execution, the 𝑛𝑝 processes work together to complete 𝑇 iterations.
For a rank 𝑝 ∈ {1, 2, ..., 𝑛𝑝 } at an iteration 𝑡 ∈ {1, 2, ...,𝑇 }, we use
𝑦𝑝,𝑡 to denote its application iteration time, and use 𝑥𝑝,𝑡 to denote
network features of a router connecting to a compute node where
the rank 𝑝 exists. For ease of expression, we ignore the subscript 𝑝
in the following descriptions and formally define a problem:

Problem Statement. Given a application iteration times and
network features sequence for a rank 𝑝 with look-back window
B = {𝑦𝑡−(𝐿𝑥−1) , 𝑦𝑡−(𝐿𝑥−2) , ..., 𝑦𝑡 ;𝑥𝑡−(𝐿𝑥−1) , 𝑥𝑡−(𝐿𝑥−2) , ..., 𝑥𝑡 }
with length 𝐿𝑥 , we aim to forecast a sequence of future applica-
tion iteration times F = {𝑦𝑡+1, 𝑦𝑡+2, ..., 𝑦𝑡+𝐿𝑦 } with length 𝐿𝑦 .

3.3 Surrogate Modeling

We investigate four surrogate modeling approaches to forecast
iteration times in a distributed setting where each compute node
holding a rank has a surrogate model. The details are as follows:
1We might use process and rank interchangeable in this paper.
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Table 1: Performance and inference time overhead comparison results on all ranks. I.T.O. means inference time overhead. The

lower MSE and MAE denote more effective, and the lower I.T.O. denotes more efficient. The best results are in bold.

Methods

cont-adp rand-adp
MSE MAE I.T.O. (s) MSE MAE I.T.O. (s)

LAST 0.0034±0.0000 0.0291±0.0000 0.0057±0.0017 0.0026±0.0000 0.0176±0.0000 0.0034±0.0001
Average 0.0048±0.0000 0.0309±0.0000 0.0926±0.0013 0.0110±0.0000 0.0343±0.0000 0.0680±0.0005
ARIMA 0.0047±0.0000 0.0330±0.0000 15120.1573±34.715 0.0107±0.0000 0.0315±0.0000 11473.6628±19.4696
LSTM 0.0032±0.0001 0.0265±0.0004 5.8233±0.1117 0.0020±0.0001 0.0170±0.0004 4.6101±0.0371
LSTM-Feat 0.0025±0.0001 0.0253±0.0016 6.1617±0.0107 0.0013±0.0001 0.0167±0.0007 4.5913±0.0244
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Figure 2: Feature importance analysis. The legend name de-

notes removing corresponding features in LSTM-Feat.

LAST is a heuristic method and forecasts the application iteration
time of a future iteration as the latest historical application iteration
time, i.e., 𝑦𝑡+1 = 𝑦𝑡 . Note that the length of the foretasted sequence
and the look-back window both have to be 1, i.e., 𝐿𝑥 = 𝐿𝑦 = 1.
Average is also a heuristic method and forecasts application it-
eration time of a future iteration as the average of the look-back

window B, i.e., 𝑦𝑡+1 =
∑𝑡

𝑖=𝑡−(𝐿𝑥 −1) 𝑦𝑖
𝐿𝑥

. Note that we have settled for
the length of the foretasted sequence to be 1 and a length of the
look-back window of 10, i.e. 𝐿𝑥 = 10 and 𝐿𝑦 = 1.
ARIMA (AutoRegressive Integrated Moving Average) [3] is a clas-
sical statistical time series analysis method and can handle non-
stationary time series. The look-back window 𝐿𝑥 is 250 due to the
frequent occurrence of matrix decomposition errors for small 𝐿𝑥 ,
i.e. 𝐿𝑥 = 250. The forecasted sequence has size of 1, i.e. 𝐿𝑦 = 1.
LSTM (Long Short-Term Memory) [13] is a well-known machine
learning model and widely used in time series data. LSTM is ef-
fective in addressing the gradient vanishing issue in sequential
modeling problems. We set 𝐿𝑥 = 10 and 𝐿𝑦 = 1.
LSTM-Feat is a variant of LSTM. Different from the above sur-
rogate modeling methods where the input and output are both
application iteration times, it leverages a combination of applica-
tion iteration times sequences and network features sequences to
forecast iteration times sequences. The motivation is to leverage
the potential correlation among network features and application
iteration times. We set 𝐿𝑥 = 10 and 𝐿𝑦 = 1.

4 EXPERIMENTS

4.1 Experimental Setting

Network Topology. The dragonfly network (see Figure 1) has a hi-
erarchical design, consisting of the all-to-all inter-group connection

and intra-group connection. Our network has 72 compute nodes
and 36 routers equally divided across 9 groups. Each router has 7
ports: 2 terminal ports, 3 local ports, and 2 global ports.
Network Simulator.We utilize CODES [23] to simulate our work-
load. Times are collected for 2000 iterations along with network
features from each port collected at 250 𝜇s.
Network Features. The network features consist of bw-consumed,
qos-data, busy-time, vc-occupancy, and downstream-credits. Qos-
data is the amount of data sent by the port; bw-consumed is the
percentage of the consumed bandwidth; busy-time is the total time
the port was stalled, i.e. chunks were blocked from sending due
to flow control; vc-occupancy is the number of bytes in each VoQ
buffer of the port at the point in time when the measurement was
taken; downstream-credits is the number of credits available for
the respective downstream virtual channels at the point in time
when the measurement was taken.
Align Datasets. We align application iteration times and network
features datasets to resolve the inconsistency between them. Iter-
ation times are on compute nodes while network features are on
routers; an iteration time is recorded when an iteration completes
while network features are collected at a fixed time interval. To
eliminate the inconsistency, we combine the iteration time on a
compute node with network features on a router connecting to the
compute node; we search time points in network features dataset
that are the nearest to iteration times, and take the network features
of the time points to combine the iteration times.
HPC Workload. The workload includes: (1) MILC is a HPC appli-
cation used to study quantum chromodynamics (QCD) and features
numerous nonblocking send/receive communication operations.
(2) UR is a synthetic traffic featuring each node sending successive
messages to a random destination. The messages are streamed at
user-defined injection loads, alternating between 10% and 100%.
Job Placement.We investigate two job placements: (1) Contiguous
Placement selects computer nodes consecutively for the processes
of the job to occupy. (2) Random Placement selects computer nodes
randomly for the processes of the job to occupy.
Routing Policy. Progressive adaptive routing [27] is used in our
simulation. Packets are routed along minimal or non-minimal paths
based on the network congestion state. When a non-minimal path
is selected, the packet will be minimally routed into a randomly
intermediate router, and then minimally forwarded to its destina-
tion. According to job placement and routing policy strategies, we
denote the two settings as cont-adp and rand-adp, respectively.
Evaluation Metrics. We use metrics MSE (Mean Square Error)
and MAE (Mean Absolute Error) to assess the effectiveness of
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Figure 3: The impact of the length 𝐿𝑦 on the MSE and infer-

ence time overhead in LSTM-Feat.

models [34, 35], and I.T.O. (Inference Time Overhead) measures
time overhead when the surrogate models do forecasts.
Implementation Details.We split 2000 iterations into training,
validation, and test data. The split ratio is 6:2:2 for cont-adp and
7:1.5:1.5 for rand-adp due to their different distributions. We normal-
ize iteration times into range [0, 1] for stability of training. We run
experiments 3 times and report the average and standard deviation.
4.2 Experimental Results

Application Iteration Times Forecasting. We show the perfor-
mance comparison for the foreasts in Table 1. According to the
experimental results, we have the following observations:
• In terms of MSE andMAE, the LSTM-Feat outperforms other sur-
rogate models, including heuristical methods, i.e., LAST and Aver-
age, traditional statistical method, i.e., ARIMA, and deep learning
methods without considering network features, i.e., LSTM. For in-
stance, LSTM-Feat outperforms LAST and LSTM by 50% and 35%,
respectively, w.r.t. MSE. It demonstrates LSTM-Feat can capture
temporal patterns in iteration times sequences and dependencies
between network features and iteration times.

• In terms of I.T.O., LAST and Average are the two fastest meth-
ods as the implementation of the heuristic methods are simple.
ARIMA is the slowest method as such a statistical method needs
to calculate parameters by fitting a set of data in a long look-back
window per step. The efficiency of deep learning methods are be-
tween the above two kind of methods. For exmaple, LSTM-Feat
is slower than LAST but faster than ARIMA. However, we show
deep learning is potential w.r.t. I.T.O. in the sensitivity analysis.

Feature Importance Analysis.We conduct feature importance
analysis in Figure 2. In detail, we remove a specific network feature
across all ports of a router, e.g., bw-consumed or busy-time, and
remove all features from a type of ports of a router, e.g.., local or
global ports, to observe the performance change of the LSTM-Feat.
Accordingly, we observe the following points:
• Network features are generally helpful to iteration times fore-
casting. For example, in the rand-adp configuration, if we remove
bw-consumed feature, MAE increases from 0.0167 to 0.0191. It
shows dependencies exist between bw-consumed and iteration
times. On the other hand, we also note that vc-occupancy and
downstream-credits are useful in cont-adp configuration while
they cannot help forecast iteration times in rand-adp configura-
tion. It may be because both features capture the state of port
buffers for a single point in time during an iteration unlike other
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Figure 4: The forecast visualization for rank 0 of LSTM-Feat.

features that capture the behavior of the port throughout the it-
eration. Furthermore, adaptive routing causes buffer occupancies
to vary somewhat stochastically, making it difficult to associate
occupancy trends to specific per-rank application activities.

• Network features on all types of ports of a router are important
to forecast application iteration times. For instance, in the cont-
adp configuration, MAE of LSTM-Feat increases from 0.0253 to
0.0261 with the removal of network features on local ports.

Sensitivity Analysis. We investigate the impact of the length 𝐿𝑦
of the future values sequence F on LSTM-Feat. Particularly, we
vary the 𝐿𝑦 and record values of metrics as shown in Figure 3. We
observe there is a trade-off between effectiveness (MSE) and effi-
ciency (I.T.O.) for LSTM-Feat. When the length 𝐿𝑦 increases, MSE
generally increases but I.T.O. consistently decreases. It means the
effectiveness of LSTM-Feat decreases but the efficiency increases
with the 𝐿𝑦 increasing. For effectiveness diminishing, the reason
is that forecasting farther length at a time is more difficult due to
more uncertainty in the father length. With regard to efficiency
increasing, it is because the required inference times are reduced if
increasing forecasting length at a time given the fixed total fore-
casting length. For instance, if the total forecasting length is 200
and the 𝐿𝑦 is 1, the required inference times are 200; if the 𝐿𝑦 is
10, the required inference times are reduced to 20. It shed light to a
promising direction where deep learning methods can achieve both
satisfactory effectiveness and efficiency if choosing appropriate 𝐿𝑦 .
Visualization. The visualization of a rank is shown in Figure 4.
LSTM-Feat can achieve satisfactory forecasting performance.

5 CONCLUSION AND FUTUREWORK

In this paper, we investigate surrogate modeling approaches to
forecast application iteration times for computational challenges in
PDES. Our results demonstrate the superiority of LSTM-Feat as a
surrogate model and potential to incorporate network features. The
future work may include: (1) decreasing the time overhead of deep
learning methods, and (2) improving long-term forecast accuracy
as the length of future value sequence 𝐿𝑦 grows.
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