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Abstract—This supplementary file contains technical proofs to
lemmas and theorems in the main paper.

I. Proof to Lemmas and Theorems
A. Proof of Lemma 1

We can apply the Bayesian theorem to derive the posterior
distribution as

p(Ψ|Ht) ∝ p(Ht|Y ,θ,ϑ,σ)p(Y ,θ,ϑ,σ)

Note that from the independence of the prior distributions, we
can derive p(Y ,θ,ϑ,σ) as

p(Y ,θ,ϑ,σ) = p(Y )p(θ,ϑ)p(σ) = p(θ,ϑ)
∏
a∈A

p(ya)p(σa).

From the independence among the feedbacks or rewards, we
can derive p(Ht|Y ,θ,ϑ,σ) as

p(Ht|Y ,θ,ϑ,σ) =

t−1∏
τ=1

p(Rτ (Aτ )|Y ,θ,ϑ,σ)

∝
t−1∏
τ=1

∏
a∈Aτ

[
f(g−1τ (Rτ (a))− xT

aθ − yT
aϑ, σa)

]1{Aτ=a}

This proof is then complete.

B. Proof of Theorem 1
Given all the known model parameters Ψ = [Y ,θ,ϑ,σ],

we define the corresponding optimal action in decision round t
as A∗t (Ψ) ∈ arg maxa∈At R̄t(a;Ψ). Note that in the Bayesian
regret setting, the known model parameters Ψ = [Y ,θ,ϑ,σ]
are random variables with the same probability distribution
as the prior distribution p(Ψ). Furthermore, the conditional
probability distribution of the unknown model parameters
p(Ψ) given the decision history Ht−1 is equivalent to the
posterior distribution of p(Ψ), i.e.,

P[Ψ|Ht−1] = p(Ψ|Ht−1).

From the GCL-PS algorithm, i.e., Algorithm 1, the sample
Ψt of the unknown model parameters in decision round t, is
generated from the posterior distribution p(Ψ|Ht−1). And the
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the action At is obtained by At ∈ arg maxa∈At R̄(a;Ψt). To
make the presentation clear, we denote the selected action as
At(Ψt). Then we have that

P[A∗t (Ψ) = a|Ht] = P[At(Ψt) = a|Ht],∀a ∈ At.

Let Ut(a;Ht−1) and Lt(a;Ht−1) denote an upper and lower
confidence bound of r̄(a,Ψ) , xTa θ+yTa ϑ with the decision
history Ht−1, which will be constructed later. Then it follows
that

E[Ut(At(Ψt);Ht−1)] = E[Ut(A
∗
t (Ψ);Ht−1)]. (1)

The gt being ζt Lipschitz implies the following inequality:

RBayT (D)

≤
∫ T∑
t=1

min

{
∆(R), ζt

[
max
a∈At

r̄(a,Ψ)−r̄(At(Ψt),Ψ)

]}
p(Ψ)dΨ.

Then with a similar derivation as [1], we can bound the
Bayesian regret as

RBayT (D) ≤

E

[
T∑
t=1

min{∆(R), ζt[Ut(At(Ψt);Ht−1)−Lt(At(Ψt);Ht−1)]}

]
+

∆(R)TP[∃a, t, r̄t(a,Ψ)/∈[Lt(At(Ψt);Ht−1), Ut(At(Ψt);Ht−1)]].

Via conditioning, we can derive the right hand side of the
above inequality as

E

[
T∑
t=1

min{∆(R), ζt[Ut(At(Ψt);Ht−1)−Lt(At(Ψt);Ht−1)]}

]

= E
Ψ∼p(Ψ)

[
E

[
T∑
t=1

min{∆(R), ζt[Ut(At(Ψt);Ht−1)

−Lt(At(Ψt);Ht−1)]}
∣∣∣∣Ψ]]

We construct the confidence bound as

Ut(a;Ht−1) = x̃Ta θt−1+

(ζtξa
√

(d+ |A|) log(T + T 2(L+ 1)) + ‖θ̃‖)‖x̃a‖Vt−1
,

Lt(a;Ht−1) = x̃Ta θt−1−
(ζtξa

√
(d+ |A|) log(T + T 2(L+ 1)) + ‖θ̃‖)‖x̃a‖Vt−1

,
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where

x̃a ,

[
xa
ea

]
,Vt , I +

t∑
τ=1

x̃Aτ x̃
T
Aτ ,

θt , V
−1
t

t∑
τ=1

x̃Aτ g
−1
τ (Rτ (Aτ )).

Let us define

θ̃ ,


θ
yT1 ϑ

...
yT|A|ϑ

 .
By a similar deviation as [2] we have that with probability at
least 1− 1/T , the following holds:

|x̃Ta θt−1 − x̃Ta θ̃|
≤ (ξa

√
(d+ |A|) log(T + T 2(L+ 1)) + ‖θ̃‖)‖x̃a‖Vt−1

.

Then we have

P[∃t, a, R̄t(a,Ψ)/∈[Lt(At(Ψt);Ht−1), Ut(At(Ψt);Ht−1)]|Ψ]

≤ 1

T
.

Then by a similar deviation as [2], we have

E

[
T∑
t=1

min{∆(R), ζt[Ut(At(Ψt);Ht−1)−Lt(At(Ψt);Ht−1)]}

]

≤
[
2 max
τ≤T

ζτ (ξmax

√
(d+ |A|) log(T + T 2(L+ 1)))

+ EΨ∼p(Ψ)[‖θ̃‖] + ∆(R)

]
√

2T (d+ |A|) log

(
1 +

T (L+ 1)

d+ |A|

)
.

Note that ‖θ̃‖ =
√∑d

i=1 θ
2 +

∑
a∈A(yTa ϑ)2. This proof is

then complete.

C. Proof of Theorem 2
It suffices to show that there is an instance of our model

who has a regret lower bound of Ω(
√
T |A|). Consider

a special case of the model with d = 0, ` = 1 and
gt(V (At)) = V (At). Furthermore, consider At = A.
Then the model reduces to the classical multi-armed bandit
setting with A arms. It is a well known results that there
is an instance of the multi-armed bandit with A arms
such that the regret lower bound is Ω(

√
T |A|). Consider

that the prior distribution concentrates on this instance
with probability one, then we have that the Bayesian for
this special case is Ω(

√
T |A|). This proof is then complete.

D. Proof of Theorem 3
The proof of this theorem by applying a result in [3].

This only involves checking the conditions of Lemma 10.11.

E. Proof of Theorem 4

To make the presentation clear, let Φ denote a sample of
the unknown model parameters which follows the distribution
of p(N)

t (·) (i.e., the landing probability of the MCMC in the
GCL-PSMC algorithm). In fact, the action At of the GCL-
PSMC algorithm is determined by Φ. To make the presentation
clear, we write At as At(Φ) in the following derivation.
Let Ut(a;Ht−1) and Lt(a;Ht−1) denote an upper and lower
confidence bound of R̄t(a;Ψ) with the decision history Ht−1
constructed in the proof of Theorem 1. We next derive a lower
bound of E[Ut(At(Φ);Ht−1]. First, via conditioning we have

E
[
R̄t(A

∗
t (Ψ);Ψ)− R̄t(At(Φ);Ψ)|Ht−1

]
= E

Ψ∼p(·|Ht−1),Φ∼p(N)
t (·)

[
R̄t(A

∗
t (Ψ);Ψ)− R̄t(At(Φ);Ψ)

]
= E

Ψ∼p(·|Ht−1)

[
R̄t(A

∗
t (Ψ);Ψ)− E

Φ∼p(N)
t (·)

[R̄t(At(Φ);Ψ)]

]

= E
Ψ∼p(·|Ht−1)

[
R̄t(A

∗
t (Ψ);Ψ)− E

Φ′∼p(·|Ht−1)
[R̄t(At(Φ

′);Ψ)]

]
+ E

Ψ∼p(·|Ht−1)

[
E

Φ′∼p(·|Ht−1)
[R̄t(At(Φ

′);Ψ)]

− E
Φ∼p(N)

t (·)
[R̄t(At(Φ);Ψ)]

]
≤ E

Ψ∼p(·|Ht−1),Φ′∼p(·|Ht−1)

[
R̄t(A

∗
t (Ψ);Ψ)−R̄t(At(Φ′);Ψ)

]
+ 2(max

r∈R
|r|)‖p(N)

t (·)− p(·|Ht−1)‖TV .

Then with a similar proof as Theorem 1, we have that

RBayT (DGCL−PSMC)

= E

[
T∑
t=1

E
[
R̄t(A

∗
t (Ψ);Ψ)− R̄t(At(Φ);Ψ)|Ht−1

]]

≤ E
[ T∑
t=1

EΨ∼p(·|Ht−1),Φ′∼p(·|Ht−1)

[
R̄t(A

∗
t (Ψ);Ψ)

−R̄t(At(Φ′);Ψ)
] ]

+ E

[
T∑
t=1

2(max
r∈R
|r|)‖p(N)

t (·)− p(·|Ht)‖TV

]

≤ RBayT (DGCL−PS) + E

[
T∑
t=1

2(max
r∈R
|r|) η√

t

]
≤ RBayT (DGCL−PS) + 2(max

r∈R
|r|)
√
Tη.

This proof is then complete.

F. Proof of Lemma 2

We prove this lemma by induction. When t = 1, it
corresponds to sampling from the prior distribution. Thus,
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Lemma 2 trivially holds. Suppose Lemma 2 with t:

Λa,t(θ,ϑ,σ) =

(
Λ−1a +

na,t−1
σ2
a

ϑϑT
)−1

,

νa,t(θ,ϑ,σ) = Λa,t(θ,ϑ,σ)

(
Λ−1a νa

+ ϑ
1

σ2
a

( t−1∑
τ=1

1{Aτ=a}g
−1
τ (Rτ (Aτ ))− na,t−1θTxa

))
.

Based on this, we next prove by induction that it also holds
with t+ 1:

Λa,t+1(θ,ϑ,σ) =

(
Λ−1a,t(θ,ϑ,σ) +

1

σ2
a

ϑϑT
)−1

=

(
Λ−1a +

na,t−1
σ2
a

ϑϑT +
1

σ2
a

ϑϑT
)−1

=

(
Λ−1a +

na,(t+1)−1

σ2
a

ϑϑT
)−1

Furthermore, we have

νa,t+1(θ,ϑ,σ) = Λa,t+1(θ,ϑ,σ)

(
Λ−1a,t(θ,ϑ,σ)νa,t(θ,ϑ,σ)

+ ϑ
1

σ2
a

g−1t (Rt(a)− θTxa)

)
= Λa,t+1(θ,ϑ,σ)

(
Λ−1a νa

+ ϑ
1

σ2
a

( t−1∑
τ=1

1{Aτ=a}g
−1
τ (Rτ (Aτ ))− na,t−1θTxa

)
+ ϑ

1

σ2
a

g−1t (Rt(a)− θTxa)

)
= Λa,t+1(θ,ϑ,σ)

(
Λ−1a νa

+ ϑ
1

σ2
a

( (t+1)−1∑
τ=1

1{Aτ=a}g
−1
τ (Rτ (Aτ ))− na,(t+1)−1θ

Txa
))
.

Thus, the first part of Lemma 2 holds. Similarly, we can prove
that the second part also holds:

Σt(Y ,σ) =

(
Σ−1 +

∑
a∈A

na,t−1
σ2
a

[xTa ,y
T
a ]T [xTa ,y

T
a ]

)−1
,

µt(Y ,σ) = Σt(Y ,σ)

(
Σ−1µ

+
∑
a∈A

[xTa ,y
T
a ]T

1

σ2
a

t−1∑
τ=1

1{Aτ=a}g
−1
τ (Rτ (Aτ ))

)
.

The last part of Lemma 2 is a simple consequence of the
Inverse Gamma distribution. This proof is then complete.
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