Xiongxiao Xu
|
Ph.D. Student
Department of Computer Science
Illinois Institute of Technology
Chicago, Illinois, United States
E-mail: xxu85@hawk.iit.edu
|
About me
I am a second-year Ph.D. student in the Department of Computer Science at Illinois Institute of Technology since Spring 2022, advised by Dr. Kai Shu. I received the B.S. degree in Computer Science from the Chongqing University in 2020, advised by Dr. Hong Xie. My research interests generally lie in data mining and machine learning, including time-series forecasting and graph learning with their applications in HPC system and anomaly detection.
Research Interests
Publications
Xiongxiao Xu, Kaize Ding, Canyu Chen, Kai Shu. "MetaGAD: Learning to Meta-Transfer for Few-shot Graph Anomaly Detection", arxiv, 2023. [arxiv]
Xiongxiao Xu. "Exploring Machine Learning Models with Spatial-Temporal Information for Interconnect Network Traffic Forecasting", Proceedings of The ACM SIGSIM International Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS), PhD Colloquium, 2023. [pdf]
Xiongxiao Xu, Xin Wang, Elkin Cruz-Camacho, Christopher D. Carothers, Kevin A. Brown, Robert B. Ross, Zhiling Lan, Kai Shu. "Machine Learning for Interconnect Network Traffic Forecasting: Investigation and Exploitation.", Proceedings of The ACM SIGSIM International Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS), Short Paper, 2023. [pdf]
Elkin Cruz-Camacho, Kevin A. Brown, Xin Wang, Xiongxiao Xu, Kai Shu, Zhiling Lan, Robert B. Ross, Christopher D. Carothers. "Hybrid PDES Simulation of HPC Networks using Zombie Packets.", Proceedings of The ACM SIGSIM International Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS), Short Paper, 2023. [pdf] (Best Short Paper Award)
Canyu Chen, Yueqing Liang, Xiongxiao Xu, Shangyu Xie, Yuan Hong, Kai Shu. "On Fair Classification with Mostly Private Sensitive Attributes", arxiv, 2022. [arxiv]
Xiongxiao Xu, Hong Xie, John C.S. Lui. "Generalized Contextual Bandits With Latent Features: Algorithms and Applications", IEEE Transactions on Neural Networks and Learning Systems (TNNLS) , 2021. [pdf]
Awards
Best Short Paper Award, ACM SIGSIGM-PADS, 2023
ACM SIGSIGM-PADS Student Travel Award, 2023
Academic Service
Program Committee
Reviewer
|